# **Orphan proteins of** *Fusarium graminearum* **important for wheat infection**

## Jin-Rong Xu

#### **Purdue University**



### Scab or head blight (FHB) of wheat & barley



- Deoxynivalenol (DON)
- Sexual reproduction plays a critical role in the disease cycle

#### - Regulation of DON biosynthesis

- \* antisense and lnc-RNA transcripts of *TRI5* and *TRI6*\* ammonium suppression (Jiang et al., 2020. PLoS Genetics)
- Contribution of elevated mutation rate during meiosis Genetic variations – sexual reproduction

1.6 per meiosis

-homothallic (selfing), haploid fungus -mutations during the repairing of DSBs

(Wang et al., in preparation)

- G-protein coupled receptors (GPCRs)

Jiang et al., 2019, Nature Microbiology

## **Orphan genes of** *Fusarium graminearum*

-Restricted to a single species or narrow clade

-Often have unknown functions

-May be important for lineage-specific adaptations



- 7.3% of protein encoding genes
- Shorter protein length
- Less transcribed



(Khalturin et al., 2009)

#### 971 orphan genes in F. graminearum





(Cuomo et al., 2007)

#### **Orphan secretory protein (OSP) genes**



## All the 50 *osp* deletion mutants were normal in growth and sexual/asexual reproduction

Jiang et al., 2020. Nature Communications

#### Three OSP genes are important for virulence



Highly up-regulated during infection

#### OSP24, OSP25, and OSP44 - near the telomeric region - small, cysteine-rich proteins



Osp24: 136 aa, 8C Osp25: 116 aa, 8C Osp44: 90 aa, 8C

**Effector genes in** *Magnaporthe oryzae* Peng et al., 2019. PLoS Genetics Ma and Xu, 2019. PLoS Genetics

### **OSP24** is important for infectious growth in the rachis

Invasive hyphae





The *osp24* mutant is reduced in infectious growth

#### Signal peptide is required for secretion and function of Osp24





SP<sup>Osp24</sup> is essential for its function

Signal peptide of Osp24 is functional in yeast

#### - No predicted NLS

#### Localization of Osp24 to the nucleus in plant cells





#### Transient expression of OSP24-GFP in Nicotiana benthamiana

## Osp24 is a cytoplasmic effector

(It may be translocated into plant cells ahead of invasive growth)



- Wheat coleoptile cells
- The OSP24-mCherry transformant

Cytoplasmic vs. apoplastic effectors in *M. oryzae* Zhang and Xu, 2014. PLoS Pathogens

## C94 and C105 are important for the function of Osp24

Eight cysteine residues – alanine scan mutagenesis
 -C94A and C105A mutations failed to complement *osp24*

osp24/OSP24



C94A & C105A mutations affect Osp24 stability

## Osp24 suppresses programmed cell death (PCD) induced by BAX or INF1



Transient expression in Nicotiana benthamiana

## **Screening for Osp24-interacting proteins**

Yeast two-hybrid library –wheat heads inoculated with F. graminearum

| Name | Clonies      | Annotation                                 |
|------|--------------|--------------------------------------------|
| OIC1 | 4,6,11,18,23 | SNF1-related protein kinase 1 (TaSnRK1)    |
| OIC2 | 2,15,19,20   | SGT1 (suppressor of the G2 allele of skp1) |
| OIC3 | 1            | S-acyltransferase 23                       |
| OIC4 | 8            | Peroxisome biogensis protein 5             |
| OIC5 | 14           | Ribosomal protein L7                       |
| OIC6 | 5,30         | Phosphoglycolate phosphatase               |
| OIC7 | 25           | Blue copper-binding protein                |
| OIC8 | 12           | Pre-mRNA-splicing factor SLU7              |

16 Osp24-interacting clones (OIC)

Jiang et al., 2020. Nature Communications

### **Osp24** interacts with wheat TaSnRK1



## The C-terminal region of Osp24 important for its interaction with TaSnRK1 and PCD suppression



Interaction with TaSnRK1



#### Essential for PCD suppression

### **TaSnRK1 contributes to FHB resistance**

• Overexpressing TaSnRK1 - increased in resistance

• Silencing TaSnRK1 - decreased in resistance





## TaSnRK1 contributes to FHB resistance Infectious growth



- reduced in TaSnRK1 OE

- increased in TaSnRK1 silencing



#### **Osp24 accelerates the degradation of TaSnRK1**

TaSnRK1 recombinant proteins co-incubated with total proteins from wheat heads inoculated with PH-1 (WT) or *osp24* mutant



#### In vitro degradation assays

- adapted from studies with SnRK1 in Arabidopsis

#### **Degradation of TaSnRK1 via the 26S proteasome**



TaSnRK1 degradation suppressed by MG132 - an inhibitor of the 26S proteasome

#### **Osp24** facilitates the interaction of TaSnRK1 with the SCF ubiquitin ligase and 26S proteasome



## TaFROG competes with Osp24 in binding with TaSnRK1

Transcription of wheat orphan TaFROG induced by DON
TaSnRK1 interacts with TaFROG Perochon et al, 2015



Both interact with the C-terminal region of TaSnRK1 In vitro pull down assays

### TaFROG overexpression enhances WHB resistance by stabilizing TaSnRK1



In vitro degradation assays



#### The Osp24-TaSgt1 interaction - Recruiting UPS to TaSnRK1

the ubiquitin-proteasome system (UPS)

- Osp24 also interacts with TaSgt1
- Sgt1 is associated with the SCF ubiquitin ligase complex





Zhang et al., 2008. EMBO J.

(Jiang et al., unpublished)

Osp25

## Acknowledgement



Zhuyun Bian Zeyi Wang

#### **Collaborators:**

Northwest A & F University (NWAFU) Purdue-NWAFU Joint Research Center

Penelope Vu Derica Tavares Yuting Hu Dr. Cong Jiang Dr. Quanghui Wang Dr. Huiquan Liu

#### Dr. Corby Kistler at USDA, UMN Dr. Li-Jun Ma at UMass Amherst



## **Thanks for your attention!**