"An overview of wheat transformation at Kansas State University"

Harold N. Trick

Department of Plant Pathology,
Kansas State University
Manhattan, Kansas, USA
Why Transform Wheat?

- Trait introduction for sexual incompatible sources
- Over-expression of transgene
- Tissue/organ localized trait expression
- Knockout phenotype (gene silencing)
- Gene pyramid (single breeding locus)

Public acceptance is needed before deployment

Validation of candidate genes
Wheat Tissue culture

- **Plant Recovery**
- **Starting Material**
- **Regeneration MSE**
- **Development MSP**
- **Proliferation**
- **Induction CM4**
Tissue culture response of select hard winter vs. Bobwhite

<table>
<thead>
<tr>
<th>Cultivar or germplasm</th>
<th>Callus formation (%)</th>
<th>Plant regeneration (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KS920866-B-7</td>
<td>92.3</td>
<td>151.9</td>
</tr>
<tr>
<td>KS920709-B-5-2</td>
<td>96.3</td>
<td>124.1</td>
</tr>
<tr>
<td>KS85WGRC01</td>
<td>51.0</td>
<td>31.4</td>
</tr>
<tr>
<td>KS89WGRC04</td>
<td>82.7</td>
<td>119.2</td>
</tr>
<tr>
<td>2137</td>
<td>54.7</td>
<td>39.6</td>
</tr>
<tr>
<td>2163</td>
<td>51.0</td>
<td>25.5</td>
</tr>
<tr>
<td>Jagger</td>
<td>70.6</td>
<td>152.9</td>
</tr>
<tr>
<td>Karl 92</td>
<td>74.0</td>
<td>40.0</td>
</tr>
<tr>
<td>Larned</td>
<td>46.3</td>
<td>9.3</td>
</tr>
<tr>
<td>Stanof</td>
<td>75.5</td>
<td>26.4</td>
</tr>
<tr>
<td>TAM 107</td>
<td>54.6</td>
<td>65.5</td>
</tr>
<tr>
<td>Tomahawk</td>
<td>86.0</td>
<td>126.0</td>
</tr>
<tr>
<td>Bobwhite</td>
<td>92.0</td>
<td>82.5</td>
</tr>
</tbody>
</table>
Wheat Transformation

Germination

Development

Proliferation

5 mg/L and 10 mg/L ammonium glufosinate
T_0 Plant Preliminary screening

Liberty painting

Application of a 0.2% aqueous solution of Liberty: plants evaluated after one week.

PCR gene detection

Maize ubi promoter \rightarrow bar gene \rightarrow nos terminator

bar gene PCR

Maize ubi. promoter \rightarrow CP \rightarrow gus linker \rightarrow CP \rightarrow nos terminator

GOI PCR

Antisense arm Sense arm
Wheat transformation timeline:

- plant seeds for immature embryo production (~ -60 to 120 da.) (plant 5 pots with 3-4 seeds/pot)
- Day 0: Harvest immature embryos (10-14 post anthesis) plate and initiate on CM4 media for 2-7 days
- Day 7: Select for embryogenic calli, bombard, then recover
- Day 10-12: Transfer to CM4 + 5 mg/ml glufosinate (G) for 2 wks
- Week 3: Transfer to CM4 + 10 mg/ml G (2 wks)
- Week 5: Transfer to CM4 + 10 mg/ml G (2wks)
- Week 7: Transfer to MSP + 10 mg/ml G and to light (2wks)
- Weeks 8-16: Transfer to MSE+ 5 G (tubes) for shot elongation and rooting

Dehlie McAfee, research assistant
Wheat transformation timeline (cont.):

- **Weeks 8-16**: Transfer to MSE+ 5 G (tubes) for shot elongation and rooting

- **Weeks 9-20(+)**: Transfer to soil (peat pots) and condition to lower RH

- **Week 12**: Transfer to one gallon pot

- **Week 13-14**: Paint with Liberty (3-5 leaf-stage)

- **Week 14**: DNA sampling for PCR analysis

- **Week 20**: Harvest T1 seed

Total time from bombardment:
- 5-7 months (Spring wheat)
- 6-9 months (Winter wheat)
Transformation capacity

<table>
<thead>
<tr>
<th>Year</th>
<th>Constructs</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>47</td>
<td>327</td>
</tr>
<tr>
<td>2009</td>
<td>23</td>
<td>167</td>
</tr>
<tr>
<td>2010</td>
<td>22</td>
<td>75</td>
</tr>
<tr>
<td>2011</td>
<td>16</td>
<td>126</td>
</tr>
</tbody>
</table>

Spring
- Bobwhite
- Fielder
- Lalbahadur
- Giza 164
- Chinese spring

Durham
- Ofanto
- Belzer
- Ben
- Maier

Winter
- Jagger
- Fuller
- WGRC42
- Molly
- Overly
- Heyne
- Karl92
- LR34
Past and current wheat transformation projects

- FHB1,2
- WSMV resistance1
- TriMV resistance1
- Leaf rust resistance1,2
- Stem rust1
- Hessian Fly resistance1,2
- Greenbug tolerance1,2
- Lesion nematode resistance1

- Al tolerance2
- Heat stress1
- Value-added projects
 - cellulosic ethanol1
 - zein protein expr.1
- Gene validations1,2

1On-campus collaboration; 2Off-campus collaboration
FHB resistance is enhanced in transgenic wheat expressing the *Arabidopsis thaliana* defense regulatory *NPR1* gene.
FHB severity is enhanced in plants expressing the *NahG* gene, which encodes a salicylic acid degrading enzyme.

NPR1-conferred FHB resistance is attenuated when *NahG* is co-expressed.
FHB resistance is enhanced in transgenic wheat expressing the *Arabidopsis thaliana* *PAD4* and *WRKY18* genes.
FHB resistance is enhanced in transgenic wheat expressing a RNAi construct for silencing expression of a gene that encodes a lipid oxidizing enzyme.
WSMV/TriMV Resistance

VIRAL COMPONENTS

<table>
<thead>
<tr>
<th></th>
<th>CP</th>
<th>CI</th>
<th>P1</th>
<th>6k2NaI</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSMV</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TriMV</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bioassays on WSMV-CP RNAi T$_1$ Plants

ELISA values

Absorbance (OD 405 nm)

Line - tiller

Jessica Rupp
PhD student
ELISA Results- T_3 Generation WSMV-CP

- WSMV resistance is currently being crossed into Overly
Current Team Members:

Hyeonju Lee, research assistant
Dehlia McAfee, research assistant
Jessica Rupp, PhD student
Dr. John P. Fellers, USDA-ARS
Jyoti Shah, UNT

Previous Lab Members:
Dr. Marcy Main, DVM, research assistant
Juliane Essig, research assistant
Sheila Stevens, research assistant
Melissa Wohler, research assistant
Luisa Cruz, MS student