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ABSTRACT

Sometimes plant pathologists assess disease intensity when they are
primarily interested in other response variables, such as yield loss or toxin
concentration in harvested products. In these situations, disease intensity
potentially could be considered a surrogate of yield or toxin. A surrogate
is a variable which can be used instead of the variable of interest in the
evaluation of experimental treatments or in making predictions. Sur-
rogates can be measured earlier, more conveniently, or more cheaply than
the variable of primary interest, but the reliability or validity of the
surrogate must be shown. We demonstrate ways of quantifying two facets
of surrogacy by using a protocol originally developed by Buyse and
colleagues for medical research. Coefficient-of-determination type sta-
tistics can be used to conveniently assess the strength of surrogacy on a
unitless scale. As a case study, we evaluated whether field severity of

Fusarium head blight (i.e., FHB index) can be used as a surrogate for
yield loss and deoxynivalenol (DON) toxin concentration in harvested
wheat grain. Bivariate mixed models and corresponding approximations
were fitted to data from 82 uniform fungicide trials conducted from 2008
to 2013. Individual-level surrogacy—for predicting the variable of
interest (yield or DON) from the surrogate (index) in plots with the
same treatment—was very low. Trial-level surrogacy—for predicting the
effect of treatment (e.g., mean difference) for the variable of interest
based on the effect of the treatment on the surrogate (index)—was
moderate for yield, and only low for DON. Challenges in using disease
severity as a surrogate for yield and toxin are discussed.
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It is routine to measure disease intensity, such as incidence,
severity, or lesion counts, in experiments or observational studies
(Bock et al. 2010; Nutter 2002). Such measurements are used to
better understand plant_microbe interactions (from the molecular
to the population and landscape scales) and evaluate disease control
tactics and strategies. Epidemiologists often measure intensity to
characterize and predict the temporal, spatial, or spatiotemporal
dynamics of disease in populations (Madden et al. 2007; Parnell
et al. 2015, 2017). Sometimes, researchers measure disease
intensity when they are actuallymore interested in another response
variable that may be dependent on or directly associated with
disease, such as yield loss or toxin contamination in harvested
products (Madden and Paul 2009; Paul et al. 2005b). For instance,
after determining a functional relationship between disease
intensity and other response variables of interest, it may be possible
to predict yield or toxin levels based on disease measurements, or
make management, grain handling, or marketing decisions.
A case in point is Fusarium head blight (FHB), caused by

Fusarium graminearum and other related fungal species, which is
one of the most economically important diseases of wheat in the
world (McMullen et al. 2012; Savary et al. 2017a). Reductions in
grain yield occur as a result of death or damage to spikes that lead
to smaller, lighter, and fewer grains produced per unit area.

Importantly, there is often the accumulation of fungal-produced
mammalian toxins such as deoxynivalenol (DON) inF.graminearum-
infected grain. The concentration of DON determines, in part, the
price received for grain (Salgado et al. 2014). Considerable efforts are
made inmany regions of theworld to improveways of reducing yield
losses and DON concentrations using host plant resistance, fungicide
applications, and cultural practices (Cowger et al. 2016; McMullen
et al. 2012; Paul et al. 2019; Wegulo et al. 2011; Willyerd et al. 2012;
Yuen and Schoneweis 2007).
It is common practice to measure the severity of disease

symptoms on wheat spikes on a percentage scale (i.e., the average
percent spike areawith symptoms, based on a sample of spikes from
a plot or field), which is generally labeled “FHB index” by FHB
researchers (Paul et al. 2005a), in field, greenhouse, and growth
chamber investigations. Means of multiple spikes per sampling or
experimental unit are then calculated. Yield (e.g., bushels/acre or
tons/hectare) and DON concentration (ppm) are also often
measured, the latter based on chromatographic or immunological
methods (Mirocha et al. 1998; Sinha and Savard 1996). Given that
FHB can affect several yield components (Cowger et al. 2016;
Salgado et al. 2015, 2017) and that DON is a virulence factor for
FHB development (Möbius and Hertweck 2009), it is therefore
natural to ask the following: can one use just FHB index to make
predictions about the effects of treatments (e.g., fungicide
application, cultivar selection) on DON or yield? In other words,
can FHB index be used as a surrogate response variable for DON or
yield? There are many practical aspects to this question. For
instance, winter wheat growers, crop advisors and breeders in the
northern US need to make decisions about which cultivars or
breeding lines to plant in the autumn, less than 2 months after
harvest, usually before DON results are available from test labs.
Moreover, direct DON testing can be time-consuming and costly
(Man et al. 2017), direct yield determination can be labor intensive
and involve expensive equipment, and both responses can be
affected by harvest delays due to adverse late-season weather
conditions (Cowger et al. 2009; Czarnecki and Evans 1986;
Edwards et al. 2018; Farrer et al. 2006).
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Results from several meta-analyses show that there is general
consistency betweenmean treatment effects across studies for FHB
index, yield, and DON (Paul et al. 2008, 2010, 2018a, b; Willyerd
et al. 2012) for a range of fungicide treatments and fungicide
treatment × cultivar resistance management combinations. For
instance, many treatments that produce the highest percent control
of FHB index across the population of studies also produce the
highest percent control of DON contamination of grain and the
highest mean or percent increase in yield. But the estimated among-
study variability for treatment effects is also high, overall,
indicating a wide range of results could occur for individual studies
in terms of the different responsevariables.No formal assessment of
the relationships between the responses in experimental units was
conducted in thesemeta-analyses (Paul et al. 2008, 2010, 2018a, b).
In another investigation, this one involving 126 studies, Paul et al.
(2005b, 2006) found a significant relationship between DON in
harvested grain and FHB index (measured at or around Feekes
growth stage 11.1 [Zadoks stage 75]). The slope of the linear
relationship was 0.22 ppm per unit of FHB index (SE = 0.017), with
a 95% confidence interval of 0.186 to 0.254. However, the
variability was high, and the 95% prediction interval (Madden
and Paul 2011 [pages 23-24]) for the slope was _0.128 to 0.568
(L. V. Madden, unpublished data), indicating that a positive, nega-
tive, or no relation between index and DON in an individual study
is probable. Likewise, Madden and Paul (2009) and Salgado et al.
(2015) found high variability across studies in the relationship
between FHB index and yield. For instance, although there was a
highly significantly linear relationship overall between index and
yield in Madden and Paul (2009) (slope = _0.038 metric tons per
hectare per unit of FHB index; SE = 0.003), a meta-analysis showed
that the 95% confidence interval for the slopewas _0.047 to _0.034,
but that the 95% prediction interval went from _0.071 to _0.010
(L. V. Madden, unpublished data), with the upper limit almost
reaching 0.
The objective of this paper is to evaluate the extent to which

FHB index can be used as a surrogate for wheat grain yield and
DON contamination of grain in experiments involving fungicide
applications. To do this, we present a rigorous framework for
assessing different facets of surrogacy, building on the concepts and
statistical methodology originally developed by Buyse and
Molenberghs (1998) and Buyse et al. (2000) for continuous random
variables. After first utilizing a hypothetical example to demon-
strate the different aspects of surrogacy, we fit an expanded version
of the model in Buyse et al. (2000) to a dataset consisting of 82
uniform fungicide trials (UFTs) supported by the U.S. Wheat and
Barley Scab Initiative (USWBSI).

MATERIALS AND METHODS

Surrogacy. The concept of, and analytical methods for,
assessing surrogacy were developed primarily to address medical
research problems, starting with the work of Prentice (1989) and
Freedman et al. (1992). Over the last quarter century, surrogate
analysis has grown into an extensive field of research (Alonso et al.
2017; Bujkiewicz et al. 2019; Buyse et al. 2016; Molenberghs et al.
2008), although the ideas have not received much formal attention
in plant pathology. As defined by Buyse et al. (2000), “A surrogate
endpoint [response variable] is one which can be used in lieu of the
endpoint [response variable] of primary interest in the evaluation of
experimental treatments or other interventions.” It should be noted
that the term endpoint is commonly used in medical statistics for
response variable. The goal of surrogate analysis is to “look for
surrogate endpoints…that can be measured earlier, more fre-
quently, more conveniently, or more cheaply than the true…
endpoint of interest” (Buyse 2017). In medical clinical trials, the
true endpoint could be long-term survival time of patients after
treatment for cancer (which can be measured in years), and a
surrogate could be a biochemical blood assay result that could be

measured relatively soon after treatment. For FHB, disease index is
certainly a potentially good surrogate because it can be measured
earlier, more conveniently, or more cheaply than DON or yield.
There are two levels to surrogacy that can be considered,

individual-level and trial-level (Alonso Abed and Van der Elst
2017b; Buyse et al. 2016). With individual-level surrogacy, one
predicts the response variable of interest in individual experiment
units (e.g., plants, plots, fields, depending on the research context)
based on the surrogate. This is done possibly to prescribe a
treatment, although with FHB, disease index measurements are
made too late to make fungicide-application decisions. In
particular, the latest time to apply a fungicide and still achieve
acceptable levels of FHB suppression is 4 to 6 days after anthesis,
which is before symptom expression (Paul et al. 2018b). However,
FHB index can potentially be used as a guide for making grain
marketing decisions for individual fields (e.g., harvest for grain or
animal feed, harvest early to avoid late-season increase inDON, use
grain-cleaning methods to reduce contaminated seeds, adjust the
harvester to reduce number of scabby grains, etc.) (Cowger et al.
2016; Delwiche et al. 2005; Salgado et al. 2014; Tkachuk et al.
1991). For other pathosystems, disease severity (or a measure of
inoculum density) is a potentially useful predictor variable for
making control-intervention decisions (Carisse et al. 2008; Hughes
2017). Evenwithout the possibility of a control intervention, a good
individual-level surrogate can be used to predict the course of
disease progression or predict the level of toxin or yield loss in plots
or fields. With individual-level surrogacy, there is an individual-
level association or correlation between the surrogate and true
response variables, after accounting for the effect of any treatment.
With trial-level surrogacy, one predicts the effect of a treatment

(e.g., mean difference between the control and treatment) on the
response variable of interest based on the effect of a treatment on the
surrogate. The concept applies to experiments where treatments
(e.g., fungicides, cultivars, cultural practices) are being tested in
randomized trials. With FHB, disease index would be a good
surrogate if the mean difference in index between the control and
the fungicide treatment of interest in a study can be used to
(precisely) predict the mean difference in yield between the control
and the fungicide treatment in that study. As explained below,
assessment of trial-level surrogacy requires results from multiple
trials (Buyse et al. 2000).
Depending on the objectives of the research, either trial-level,

individual-level, or both levels of surrogacy may be desirable
(Alonso et al. 2017; Buyse et al. 2016).

Hypothetical example. The concept of trial- and individual-
level surrogacy is demonstrated in Figure 1 for three scenarios with
two treatments (red for control and blue for fungicide treatment) and
six replicates per treatment in a completely randomized design. We
use S for the surrogate random variable and T for the (true) random
variable of primary interest. Figure 1A exemplifies the situation
with trial-level surrogacy but no individual-level surrogacy. The
control has high levels for the surrogate (abscissa) and true response
(ordinate), and the treatment has low levels for both random
variables, indicating substantial treatment effects for the surrogate
and the true response. Here, there is no overlap of the individual
replicate values for the two treatments, but that is not a requirement
for trial-level surrogacy. The key point is that the means are
substantially different, with a mean difference between the control
and the treatment of DS = 19.2 for the surrogate and DT = 5.7 for the
true response (Table 1).
In Figure 1A there is no individual-level surrogacy because there

is no relation between surrogate and true response values for
replicates receiving the same treatment. The correlation coefficient
adjusted for treatment (as explained below) is r = _0.14. It is
important to note that the correlation has to be calculated after
treatment adjustment; a simple product-moment correlation of all
the points in Figure 1A (with no adjustment) would give a
misleading large positive value.
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Figure 1B exemplifies the situation with no trial-level surrogacy
but substantial individual-level surrogacy. In particular, although
treatment has a substantial effect on the surrogate, with a difference
in treatment means ofDS = 19.2, treatment has virtually no effect on
the true response variable (mean difference of only DT = 0.1)
(Table 1). However, there is a strong positive relation between the
surrogate and true response across replicates receiving the same
treatment. The correlation adjusted for treatment is r = 0.81
(without adjustment for treatment, the correlation would be about
0). Figure 1B demonstrates that just because there is a strong
relationship betweenmeasurements of two random variables across
a collection of experimental units under the same conditions,
imposition of a treatment (e.g., fungicide application) that affects

the surrogate does not automatically affect the true response (or vice
versa). Failure to appreciate this fact has caused failures in selecting
suitable trial-level surrogates in medical studies (Alonso Abed and
Van der Elst 2017a, b).
Figure 1C exemplifies the situation with both trial-level and

individual-level surrogacy. There is a substantial difference in
treatment means for both the surrogate and true responses (Table 1)
and the correlation coefficient adjusted for treatment is r = 0.81,
showing the association between the two response variables for
experimental units with the same treatment.
As stated by Alonso Abed and Van der Elst (2017b), “…it has

become clear that the single-trial setting is too restrictive for the
evaluation of surrogate endpoints.” Figure 1A and C are single-trial
manifestations of trial-level surrogacy, but these results are not
sufficient to predict the treatment effect (e.g., mean difference) for
the true response (DT) based on the treatment effect for the surrogate
(DS). This can be seen by plotting DT versus DS for the example in
Figure 1A. As seen in Figure 2A, the graph consists of only one data
point. Onewould need to use the straight line through the origin and
intersecting the (DS, DT) point to predict the effect of treatment on
the true response for any magnitude of treatment effect on the
surrogate. For instance, if in another study, it was found that DS = 6,
then one would predict that DT = 1.8. This is a strong and very
restrictive assumption.Even if the (DS,DT) data point isknownwithout
error from an actual trial (unlikely, of course), there is an indefinite
number of lines that can go through this point. Figure 2Bdemonstrates
a selection of the possible lines. Plus, the true relationship does not
necessarily go through this single (DS,DT) point. So, it is impossible to
tell from a single trial what is the relationship between treatment
effects for the true and surrogate variables.
One must analyze data from multiple trials to determine the

relationship betweenDTandDS (Molenberghs et al. 2008). A range of
bivariate and univariate meta-analytical methods have been de-
veloped to tackle the problem, based onmixedmodel or information
theoretic principles (Alonso and Molenberghs 2007; Alonso et al.
2006; Bujkiewicz et al. 2019; Buyse et al. 2016). In order to
characterize both individual- and trial-level surrogacy, one requires
the replicate (experimental unit) data from each trial, not just the
treatment means in each trial. The new reference book by Alonso
et al. (2017) reviewsmanyof themethods.Weuse anexpansionof the
bivariate mixed models originally developed by Buyse et al. (2000)
andTibaldi et al. (2003) for two continuous variables to evaluateFHB
disease index as a surrogate for DON toxin or yield. The standard
trial-level statistical methods for surrogacy focus on a single
treatment (or combined treatment) versus the control, and we take
this approach here to utilize previously developed statistical theory.

Data: FHB case study. There have been over 300 UFTs
carried out in the United States between 1995 and 2013, conducted
since 1998 under the auspices of USWBSI. Several meta-analyses
have been published based on this expanding database (Madden
et al. 2016; Paul et al. 2007, 2008, 2010, 2018a, b) for the purpose of
determining the efficacy of different fungicide treatments for
controlling FHB disease index, DON in grain, and yield loss. The
trials up through 2007 primarily focused on different demethylation
inhibitor (DMI) fungicides applied at wheat anthesis (Feekes
10.5.1; Zadoks stage 60); later trials focused on other fungicide
chemistries (e.g., quinone outside inhibitor [QoI]), combinations of
fungicides, frequency of applications, and different application
timings. Overall, three different DMI fungicide products applied at
or shortly after anthesis provided the highest, most consistent, and
very similar levels of control across trials (Paul et al. 2018a):

(i) metconazole (trade name Caramba; BASF Corp., Research
Triangle Park, NC)

(ii) prothioconazole (Proline; Bayer CropScience, Research
Triangle Park, NC)

(iii) prothioconazole plus tebuconazole mixture (Prosaro; Bayer
CropScience)

Fig. 1. Example scenarios to demonstrate trial-level and individual-level sur-
rogacy for a single trial. Red solid squares indicate the control and blue solid
circles indicate the treatment. A, Example of trial-level but no individual-level
surrogacy. B, Example of individual-level surrogacy but no trial-level surro-
gacy. C, example of both trial- and individual-level surrogacy. Results are
given in Table 1. In A, mean difference between control and treatment (i.e.,
treatment effect) are given for the surrogate (S) and the true (definitive) re-
sponse (T).
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These three treatments plus the control were used here in the
surrogacy analysis, based on the premise that if a given variable is a
useful trial-level surrogate then this will bemanifestedwith the best
treatment(s).
The published meta-analyses to-date from the UFT database have

used the treatment means and corresponding sampling (i.e., within-
trial) variances for each trial (Paul et al. 2007, 2008, 2010, 2018a, b).
This is sufficient for univariate and network (multitreatment) meta-
analysis (Madden et al. 2016; Whitehead 2002). In fact, the UFT
database up to 2007 consists only of means and sampling variances
(i.e., within-trial weights) for each trial. However, to assess individual-
level surrogacy, individual replicate observations within trials are
required with measurements of the surrogate and true response
variables (Buyse et al. 2016). So, for the surrogacy analysis, we used
the 82 trials for the 6 years from 2008 through 2013 with the available
replicate data for both DON and FHB index. Randomized block
designs were used in all trials. Prothioconazole plus tebuconazole (as
a single premixed product of the two active ingredients; Prosaro) was
used in all trials,metconazole in81of the82 trials, andprothioconazole
as a single active-ingredient product (Proline) in seven of the trials.
The experimental procedures, including plot size, sample size for

disease index and DON, fungicide dose and timing for each of the
three fungicides, and harvesting methods, generally followed a
standard protocol in all trials, since they were performed using the
guidelines specified by the USWBSI. The fungicides were applied
at the labeled dose for the treatments considered here. Methods
were all described in detail in Paul et al. (2018a, b), and are not
repeated here. Critical aspects of the methods are brought up in the
Discussion. These previous investigations determined the effects of
many different treatments on control of FHB index, DON, and
increase in yield, and dealtwith effects ofmoderator variables (trial-
level properties) on treatment effects. These past investigations
dealt only with each response variable (endpoint) individually. The
present investigation focuses exclusively on surrogacy, which
entails quantifying the effects of treatments on pairs of endpoints.
For each trial in the current analysis, an indicator variable Z was

used to represent the treatment-group designation of each experi-
mental unit (plot).Zwas coded as _1 for any control plot, and as+1 for
any plot of the three DMI treatments listed above. Thus, these three
treatmentswere considered asmultiple replicates of a single fungicide
‘treatment’ in each trial. We use all three treatments together here in
order to maximize the amount of data in the surrogacy analysis,
therefore increasing statistical power and precision (Brown and
Prescott 2015). We thus follow the meta-analytical approach of
Caldwell and Welton (2016) and Melendez-Torres et al. (2015) of
lumping treatments into “clinically meaningful units”.

Analytical methods. Let i be the index for trial (i = 1, …, N,
withN representing the number of trials), j be the index for the block
within the ith trial, k be the index for observation (e.g., experimental
unit; plot) within block within trial, ni be the number of blocks
within the ith trial, (j = 1, …, nj), and nij be the number of
observations in the jth block of the ith trial (k = 1,…, nij). Sijk is the
surrogate response variable (endpoint) for the kth observation in the
jth block of the ith trial, and Tijk is the true (or definitive) response
variable (endpoint) for the kth observation in the jth block of the ith
trial. Zijk is the treatment indicator variable (_1, +1) for the kth

observation in the jth block of the ith trial. Although we use
the designation Z = _1 for the control and Z = 1 for the treatment,
other coding could be used (with corresponding modifications
in the determination of treatment effects in the models below). nij
could be as few as two (a control and one of the three DMI fungi-
cides listed above), or has high as four here (control and all three
fungicide treatments present in a trial). The “ijk” index combination
uniquely identifies each experimental unit in the ith trial.

Models. In the case study, S is FHB disease index at Feekes
growth stage 11.1 (Zadoks scale 75) and T is either yield (T/ha) or
DON (ppm) in harvested grain at the end of the season. In other
pathosystems, S could be area under the disease progress curve or
measure of disease severity or incidence at particular times during
the epidemics.
Expanding on the work of Buyse et al. (2000), a bivariate model

for the two response variables is

Sijk =hSi +BSij +aiZijk + eSijk
Tijk =hTi +BTij + biZijk + eTijk

(1)

where hSi represents the expected value of the surrogate for the ith
trial, BSij is the effect of the jth block in the ith trial on the surrogate,
ai is the parameter for the effect of treatment on the surrogate in trial
i, eSijk is the residual for the surrogate. Likewise, hTi represents the
expected value of the true response for the ith trial, BTij is the ef-
fect of the jth block in the ith trial on the true response, bi is the para-
meter for the effect of treatment on the true response in trial i, and
eTijk is the residual for the surrogate. The original and subsequent
surrogacy models of Buyse et al. (2000, 2016), and of most other
authors (Alonso et al. 2017), are for a single binary categorization of
treatment without any other within-study or study-level covariates;
our analysis continues with this approach. One could consider the
block effect as either fixed or random, but we consider it a random
effect here. Distributional properties of the residuals and block
effects are given below. In equation 1, the h parameters (hSi, hTi)
represent the overall level of the response variables across the
control and treatment, reflecting among other things, the favor-
ability of the environment for disease development or toxin
production, or grain production, as well as local cropping practices,
wheat cultivar, wheat market class, and so on.
There are four relevant expected values (means) for the ith trial

based on the application of equation 1, corresponding to the control
and treatment means for the surrogate (µSi(Con), µSi(Treat)) and for
the true response variable (µTi(Con), µTi(Treat)) (Buyse et al. 2000;
Molenberghs et al. 2008). With the _1/1 coding for Z in equation 1,
these are given by

µSiðConÞ =hSi
_ai

µSiðTreatÞ =hSi +ai

µTiðConÞ =hTi
_ bi

µTiðTreatÞ =hTi + bi

(2)

when the block effect is random with an expected value of 0 (the
standard assumption). The treatment effects (i.e., differences in

TABLE 1. Results for the hypothetical examples in Figure 1

Scenarioa Response variable Treatment mean Control mean Mean differenceb Adjusted correlation

A Surrogate 4.9 24.1 19.2 _0.14
True 2.4 8.1 5.7

B Surrogate 4.9 24.1 19.2 0.81
True 4.6 4.5 0.1

C Surrogate 4.9 24.1 19.2 0.81
True 2.6 7.5 4.9

a Each scenario represents one trial.
b Treatment effect for the trial.
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expected values between the treatment and control) are therefore
given by

DSi = µSiðTreatÞ _ µSiðConÞ = 2ai

DTi = µTiðTreatÞ _ µTiðConÞ = 2bi
(3)

With three different fungicides in a trial, this treatment effect is the
difference between the expected value for the combined treatment
group and the control. Other coding for Z would produce alternative
versions of equation3. For instance, reversing the sign ofZ (so that_1
is for the treatment) would reverse the sign of the right side of the
equations. Use of _1/2 and 1/2 would result in the treatment effects
being simply ai and bi. The parameterization chosen here allows
some straight-forward postmodel-fitting calculations of surrogacy as
used in Alonso Abed and Van der Elst (2017b).
We can assume that the trials being analyzed are a random sample

from a larger population of trials, a standard assumption in meta-
analysis (Madden and Paul 2011; Whitehead 2002), and re-express
equation 1 as a random-coefficient mixed model. Such a model
accounts for the hierarchy of the design (blocks within trials,
treatments within blocks), correlations of observations within trials
(because they share a random effect level), and measurement
(i.e., estimation) error (Tibaldi et al. 2003). Model expansion is
done by redefining the four nonblock parameters per trial (hSi, hTi,

ai, bi) as the sum of a (global) constant or parameter (hS, hT, a, b)
plus a random trial effect (mSi, mTi, ai, bi):

hSi =hS +mSi

hTi =hT +mTi

ai =a + ai
bi = b + bi

(4)

The distributional properties are described below. Combining
equations 1 and 4, one obtains:

Sijk = ðhS +mSiÞ+BSij + ða+ aiÞ Zijk + eSijk
Tijk = ðhT +mTiÞ+BTij + ðb+ biÞ Zijk + eTijk (5)

Based on equation 5, expected values for each treatment and
response variable combination are given by

µSiðConÞ = ðhS +mSiÞ _ ða+ aiÞ
µSiðTreatÞ = ðhS +mSiÞ + ða+ aiÞ
µTiðConÞ =   ðhT +mTiÞ _ ðb+ biÞ
µTiðTreatÞ =   ðhT +mTiÞ+ ðb+ biÞ

(6)

Treatment effects per trial are then given by

DSi = µSiðTreatÞ _ µSiðConÞ = 2ai = 2ða+ aiÞ
DTi = µTiðTreatÞ _ µTiðConÞ = 2bi = 2ðb + biÞ (7)

Because the expressions involve random effects, equations 6 and 7
defines BLUPs rather than the fixed-effect parameters of equations 2
and 3 (Littell et al. 2006); these can be considered trial-specific
predictions. The expected values of the treatment effects across the
population of trials (with _1/1 coding) are given by

DS = 2a
DT = 2b

(8)

which are fixed-effect parameters.
Note that equations 1 and 5 are generalizations of the models

proposed by Buyse et al. (2000) because they did not deal with
blocking within trials. For randomized trials without blocks, j is the
index for observation (experimental unit such as a plot) within the
trial (rather than the index for block), and ni refer to number of
observations per trial. The k subscript is then dropped.

Distributions. Equation 5 (or equation 1) can be fitted as
univariate models, that is, with a separate fit for S and T, or as
bivariate models, that is, with a combinedmodel fit for S and T. The
latter takes into account the correlations of the two response
variables and the random effects in the model (Alonso Abed and
Van der Elst 2017b; Tibaldi et al. 2003). The bivariate approach
provides one valuablemethod for quantifying individual- and trial-
level surrogacy (Buyse et al. 2016; Molenberghs et al. 2008). For
the bivariate fit of equation 5, we need to define the distributions of
the random variables and random effects on the right side. The
residuals are assumed to have a bivariate normal distribution with
nonzero covariance. Defining eijk as the matrix of the two residuals

for S and T, eijk = ðeSijk; eTijkÞT , where the T superscript means
matrix transpose, the residual distribution is given by eijk;Nð0;SÞ,
where 0 is the vector of expected values (0) and S is the residual
variance-covariance matrix written as

S=

�
s2
S sST

s2
T

�
(9)

Fig. 2. Conceptualization of trial-level surrogacy. A, Treatment effect (e.g.,
mean difference) for the true (definitive) response variable versus the treatment
effect for the surrogate response variable. Large solid circle: result for the single
trial in scenario A in Figure 1 (DS = 19.2, DT = 5.7; see means in Table 1). The line
connects this point to the origin. B, Same single-trial treatment-effect observation
as in part A, but with several lines (out of an infinite number of possible lines)
intersecting the treatment-effect point. Without multiple trials, one does not know
the relationship between treatment effects for the true and response variables.
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Equation 9 indicates a separate within-trial variance for S and T
(s2

S;s
2
T ) and a covariance that can be positive, negative, or 0 (sST).

Note that the variance-covariance matrices (here and below) are
symmetrical and only the upper diagonal elements are usually
shown for ease of reading.
For the block effects, we assume a bivariate distribution.Defining

the matrix Bij = ðBSij;BTijÞT for the jth block effect of the ith trial for
S and T, we write its distribution as Bij;Nð0;QÞ, where the
variance-covariance matrix is written as

Q=

�
§2S §ST

§2T

�
(10)

Equation 10 allows for different block-effect variances for the two
response variables. The appropriateness of a block-effect term in
equation 5 and the structure of the variance-covariance matrix in
equation 10 (i.e., whether it was possible to allow for a nonzero
value of the covariance §ST) was evaluated under model diagnostics
(see below).
The four random effects of equation 4 that are components of

equation 5 are assumed to follow amultivariate normal distribution.

Defining the matrix Vi = ðmSi;mTi; ai; biÞT for these four random
effects of the ith trial, we represent the distribution asVi;Nð0;DÞ,
and write the variance-covariance matrix as

D=

0
BB@

d2S dST dSa dSb

d2T dTa dTb

d2a dab

d2b

1
CCA (11)

In equation 11, the diagonal d terms are the variances among trials
for each random effect and the off-diagonal d elements are the
covariances. The elements of the D matrix characterize the
variability in the treatment effects and overall level of the responses
among trials (as further explained below). We assume that Vi, Bij,
and eijk are independent.

Surrogacy determination. Based on equation 5 as a bivariate
model, with equations 9-11 for the variances and covariances, one
can define coefficient-of-determination-type (R2) statistics for
individual- and trial-level surrogacy. Individual-level surrogacy is
easily defined from the bivariate model based on equation 9 for
variance-covariance matrix of the residuals. As shown by Buyse
et al. (2000),

R2
indiv =

ðsSTÞ2
s2
Ss

2
T

(12)

which is simply the square of the correlation coefficient between the
residuals after adjusting for other terms in themodel (e.g., adjusting
for treatment effects, block effects, overall trial effects). Equation
12 can also be used if equation 1 (with fixed rather than random
effects for ai, bi, hSi, and hTi) is directly fitted to the data as a
bivariate model, as long as the residuals are modeled as correlated
random variables (equation 9).
Determining trial-level surrogacy based on the bivariate mixed

model is also possible. Consider a hypothetical new trial, i = new,
with data for the surrogate but not for the true response variable.
This can also be a randomly selected trial out of the originalN trials.
The question to be answered is:What is the effect of treatment (e.g.,
mean difference) on the true response given the effect of treatment
on the surrogate? The calculations are for a completely randomized
(without blocks) new trial or a trial in which block has no effect
(note that, on average, block does not have an effect, by definition).
This allows us to use the results in Buyse et al. (2000).

Fitting the single-trial version of equation 5 for just the surrogate
response variable provides estimates of hSnew (i.e., hSiwith i = new)
and anew (i.e., ai with i = new). Based on equation 4, we can then
define the random effects for this trial:

mSnew =hSnew
_hS

anew =anew
_a (13)

where the last terms on the right side (hS and a) are the global
parameters for the population of studies (equations 4, 5, 6, and 7),
andmSnew and anew represent the random effectsmSi and ai for the i=
new trial. For the definition of trial-level surrogacy given above, we
want to predict the effect of treatment on the true response variable,
bnew (i.e., bnew = b + bnew), based on knowledge of hSnew and anew.
Buyse et al. (2000) derived expressions for the expected value and

variance of bnew conditional on the results for the surrogate.

EðbnewjhSnew;anewÞ= b+
�
dSb

dab

�T
 

d2S dSa

dSa d2a

!_
1�

hSnew
_hS

anew
_a

�

varðbnewjhSnew;anewÞ= d2b _
�
dSb

dab

�T
 

d2S dSa

dSa d2a

!_
1�

dSb

dab

�

(14)

Importantly, these terms for bnew on the left side depend only on the
(bivariate) results for the sampled population of studies and on the
results for the surrogate in the new study. A surrogate is perfect at
the trial level if the conditional variance [var(bnew|hSnew,anew)] is 0.
Thus, one canmeasure how close this conditional variance is to 0 on
a relative scale (i.e., relative to thevariance for b, i.e., db

2
)with a trial-

level coefficient of determination-type statistic:

R2
trial =

�
dSb
dab

�T� d2S dSa

dSa d2a

�_1�
dSb
dab

�
d2b

(15)

Equation 15 represents the proportion of the variance in the
treatment effect on the true responsevariable (e.g.,mean difference)
that is explained by the treatment effect on the surrogate.
R2
trial and R2

indiv are estimated after fitting equation 5 to the data
using estimates of the variances and covariances in equations 11 and
9. Together, these two coefficients of determination characterize the
two aspects of surrogacy on a relative scale. Confidence intervals
for these coefficients of determination can be estimated using the
methods in Cortiñas et al. (2008).

Model fitting. SASmacros, anRpackage, and a (R-based) Shiny
App for cloud-computing have beendeveloped to fit several surrogacy
models to data frommultiple trials and calculate statistics such as the
R2metrics (Alonso et al. 2017;Tilahun et al. 2007).Althoughdifferent
distributions for the responsevariables (endpoints) are accommodated
(continuous normal, binomial, survival distributions), with several
model choices and link-function choices being possible, the available
models are not adequate for common agricultural experiments. For
instance, these specialized programs cannot directly handle blocking
within trials, multiple treatments, additional random effects, and
covariables, and cannot dealwithdifferent experimental designs in the
different trials. Of these, the need to incorporate blocking is important
for our investigation. So, we fitted all models using the MIXED
procedure in SAS, expanding on code provided in Buyse et al. (2000),
Tibaldi et al. (2003), and Bigirumurame et al. (2017). Additional code
was written in SAS data steps and the IML procedure for postmodel-
fitting processing to calculate R2 and other statistics. Example code
for fitting example 5 is given in Supplementary File S1.
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The use of equation 5 assumes a linear relationship between S and
T, which serves as the basis of the individual-level surrogacy
(equation 12). Assessment of trial-level surrogacy based on the use
of equation 14 assumes a linear relationship between bi and ai. We
assessed linearity graphically, by plotting the estimated residuals
(from equation 5) versus predicted values and estimated residuals
for S versus estimated residuals for T. Furthermore, in anticipation
of the approximations (below), we plotted estimates of 2bi versus
estimates of 2ai to assess the linearity of the trial-level surrogacy
relationship.
Equation 1 can also be directly fitted to data from multiple trials,

withai andbi as fixed-effect parameters. Therewill be awider range
of estimates of these effectswith the fixed-effect approach thanwith
the random-coefficient approach (Madden and Paul 2009) because
of the shrinkage effect obtained with BLUPs (Littell et al. 2006).
This was not pursued here.

Approximations, alternatives, and simplifications. As
pointed out by Tibaldi et al. (2003), fitting a bivariate random-
coefficient mixed model such as the one in equation 5 can be quite
challenging, especially with a limited number of trials. Even with
a successful model fit (i.e., convergence of the optimization
algorithm), the estimatedDmatrix of equation 11 for variances and
covariances may be nonpositive definite or ill-conditioned, leading
to uncertainR2

trial estimates. In our case, the full impact of the block
effect in the original trials also is uncertain in the R2

trial calculations.
Although not of concern with our investigation, experimental
designs may vary among trials in other situations, or one may want
to determine surrogacy with multiple treatments per trial. Thus,
alternatives are desirable. A wide range of approximations have
been developed as alternatives to the direct use of the full mixed
model (Buyse et al. 2016; Tibaldi et al. 2003). Evenwhen equation 5
(or similar bivariate mixed model) is successfully fitted, some of
these approximations lead to valuable ways of visualizing potential
individual- and trial-level surrogates, leading to improved insight
(see below).
The approximations are multistage processes. For individual-

level surrogacy, one first fits the two components of equation 5
(random trial effects) or equation 1 (fixed trial effects) separately
to the surrogate and true response variables (Alonso Abed and Van
der Elst 2017a; Tibaldi et al. 2003). That is, univariate models are
fitted to S and to T (with eSijk;Nð0;s2

SÞ;     eTijk;Nð0;s2
TÞ), which is

equivalent to forcing the sST covariance in equation 9 to be 0 in the
bivariate case. With random trial effects, the variance-covariance
for trials is

DS =

�
d2S dSa

d2a

�

for the surrogate and

DT =

�
d2T dTb

d2b

�

for the true response variable.
The residuals are then estimated for each response variable

(êSijk; êTijk), and R2
indiv is estimated as the square of the correlation

coefficient between these two residual estimates:

R2
indiv =

�
corr

�
êSijk; êTijk

��2
(16)

It is critical that the univariate models be fitted to S and T for the
calculation in equation 16 to work, because if the full bivariate
model is used (with equation 9 for the variance-covariance matrix),
then the correlation is removed from the residuals and incorporated

directly in the model parameters (sST). A plot of êTijk versus êSijk
from the separate univariate fits is a useful graphic way to visualize
the individual-level surrogacy, if there is any, which also serves as a
diagnostic check on the linearity of the relationship between the two
endpoints.
For trial-level surrogacy, one first fits either the bivariate or two

separate univariate models (equations 5 or 1) to the data across
trials, resulting in the following estimates or empirical BLUPs:

ĥSi   ð=   ĥS + m̂Si   for  the  random-effects  approachÞ 
âi   ð=     a+ âiÞ
ĥTi   ð=   ĥT + m̂TiÞ
b̂i  
�
=   b̂+ b̂i

�

for each trial. One then fits the following least squares regression

equation to the b̂i, ĥSi, and âi parameter estimates from each trial:

b̂i =l0 +l1ĥSi + l2âi + ji (17)

where the l terms are new parameters to be estimated and x is a
new residual term (Tibaldi et al. 2003). The regular R2 from
this regression is an estimate of R2

trial from equation 15. A plot of

b̂iversus âi (or 2b̂i versus 2âifor the mean differences per trial;
equations 3 and 7) shows how the treatment effect for the surrogate
affects the treatment effect for the true response variable. A plot of

b̂i versus ĥSi shows how the overall magnitude of the surrogate in
a trial affects the treatment effect for the true response; this graph
also serves as a diagnostic check on the linearity of the relation-
ship between treatment effects for the two endpoints. Weighted
regression can be used also (if trials vary substantially in size), or a
multivariatemeta-analysis of these parameter estimates can be used
to more fully capture the hierarchical nature of the data and the
intercorrelations of the estimates (Tibaldi et al. 2003).
An advantage of equation 17 is that it can be used when there are

multiple treatments (m = 1, …, M treatments), with multiple b
parameters, so that one could do a separate regression for eachbmi to
estimate the trial-level surrogacy for each treatment.

FHB analyses. Analyses were performed for FHB index as a
surrogate for yield and for DON in grain. For the latter, analysis was
done with untransformed index and DON measurements, and also
for log-transformed index and DON. Past work based on results
from multiple trials has shown a linear relationship between index
and yield (Madden and Paul 2009) and between index and DON
(Paul et al. 2006), so we continue with analyses of these response
variables (endpoints) here. For comparison purposes, to assess the
sensitivity of the approach to the choice of endpoint scale, we also
considered the angular transformation of index. The analysis based
on logs of the response variables is needed for comparisons with
previously published meta-analyses of the relative effects of several
different fungicide treatments on index and DON (Paul et al. 2008,
2010, 2018a, b). With log-transformed values, a treatment effect
(difference in log-means between a treatment and a control) is the
same as the log-response ratio (Paul et al. 2008); back-transformation
of the log-response ratio leads to an estimate of the percent control
(i.e., percent reduction in index or DON by the treatment relative to
the control) (Madden and Paul 2011; Paul et al. 2008).
Three sets of analyses were done for each of the surrogate:true

response situations: (a) bivariate model with random trial effects
(equations 5, 9, 10, and 11); (b) univariate model with random trial
effects (equations 5, 16, and 17); and (c) bivariate model with fixed
trial effects (equations 1, 10, and 12). Methods b and c can be
considered approximations (Buyse et al. 2016).
For the full bivariate model (approach a), we first considered

different versions of equation 5 before deciding on the final model
form for characterizing surrogacy. In particular, we considered
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three versions of the block effect (Bij = ðBSij;BTijÞT ): no block effect
(so that equation 5 reduces to the simpler original model in Buyse
et al. (2000)), a block effect with a covariance of 0 between the
effects for S and T (i.e., §ST = 0 in theQ variance-covariance matrix
of equation 10), and a block effect with no constraints on the
variances and covariance of the Q matrix. We also considered the
even simpler bivariate mixed model where there is no block effect
and no randomeffect of trial (i.e., nomSi term); this lattermodel was
suggested by Buyse et al. (2000) as potentially desirable for
interpretation purposes, if there is no strong effect of trial on the
surrogate. The Akaike information criterion (AIC) statistic was
calculated for the fit of each model form, and we chose the model
with the smallest AIC (Brown and Prescott 2015).

RESULTS

Form of bivariate random-trial-effects model. Versions of
equation 5without a block effect or a random trial effect gavepoorer
fits to the data than the versions with a block effect (Table 2). For the
log-transformed response variables, the model with a zero co-
variance for the block effects (§ST = 0 in equation 10 forQ) had the
best fit based onAIC. For the yield:index andDON:index response-
variable models, the estimated Q variance-covariance matrix for
the block effects (equation 10) was singular when there were no
constraints on §ST. For instance, the absolute value of the correlation
was estimated to be 1 for the block effects for S and T; this suggests
an overparameterized model when no constraint is placed on §ST;
using a model with this property can substantially inflate the esti-
mates of variances (Riley et al. 2007). For quantifying surrogacy,
therefore, we chose equation 5, using 0 for §ST in equation 10 forQ.

Disease index and yield. The bivariate random-trial-effects
model (equation 5; with §ST = 0 in equation 10) was successfully
fitted to the FHB index and yield data. Residual plots revealed no
evidence to reject linearity between the response variables, and the

plots of 2b̂i versus 2âi also did not suggest nonlinearity for the
relationship between treatment effects for the endpoints. Based on
the estimated parameters, fungicide treatment resulted in an average
reduction of 8.3 units of percent field severity for index, the surrogate

(D̂S = 2â= _8.3), and an average increase of 0.44 T/ha for yield, the

response of interest in this case (D̂T = 2b̂= 0.44) (Table 3). Both were
highly significant (P < 0.001). The estimated treatment effects for

index across the 82 studies (D̂Si = 2âi = 2ðâ+ âiÞ; equation 7) ranged
from _35.7 to 0.24; the estimated treatment effect for yield

(D̂Ti = 2b̂i = 2ðb̂+ b̂iÞ) ranged from 0.01 to 1.19 (Fig. 3). The
estimated D variance-covariance matrix for trial and treatment
effects (equation 11), for yield and the other true response variables
(below), is given in Supplementary File S2.
The estimated treatment effect for yield decreased with the

estimated treatment effect for index and increased with the
estimated expected value for index in each trial (ĥSi = ĥS + m̂Si)
(Fig. 3A and B). The former indicates that the largest increases in
yield from fungicide treatment tended to occur with the largest
decreases in FHB index from the treatment. The latter indicates that

the increase in expected yield after treatment tends to be larger in
trials when FHB index is larger thanwhen smaller; this is consistent
with a previous meta-analysis of treatment means per trial,
involving trials between 1995 and 2007 (Paul et al. 2010). Based
on the estimated terms in equation 15, the trial-level coefficient of

determination was R̂
2

trial = 0.42, indicating a moderate level of trial-
level surrogacy of index for wheat yield (Table 3). Based on
equation 12, there was no evidence of individual-level surrogacy

(R̂
2

indiv = 0.002). This is confirmed by a plot of estimated residuals
obtained from fitting the univariate random-effect models to the
data (Fig. 3C). Presence of individual-level surrogacy would have
beenmanifested by a steeper slope and less variation around the line
in Figure 3C.
Lower trial-level surrogacy was estimated using two univariate

random-trial-effect models (equation 5) or with a bivariate fixed-
trial-effectmodel (equation 1). Based on the fit of equation 17 to the
estimated treatment effects and surrogate expected values per trial,

R̂
2

trial equaled 0.22 (Table 3), about half the value found with the full
bivariate random-trial-effect model. This lower coefficient of
determination was close to the lower limit of the 95% confidence
interval for R2

trial that was found with the full model (0.25). The

estimated individual-level surrogacy, R̂
2

indiv, was unchanged when
using the univariate random-effect model (equation 16) or the
bivariate fixed-effect model (equation 12).

Disease index and DON. The bivariate random-trial-effects
model (equation 5; §ST = 0 in equation 10) was also successfully
fitted to the (untransformed) FHB and DON data. As with yield,
residual plots revealed no evidence to reject linearity between the

response variables, and the plots of 2b̂i versus 2âi also did not
suggest nonlinearity. As anticipated, the same estimated expected
reduction in index from the fungicide treatment was found as

with the surrogacy analysis of index and yield (D̂S = 2â= _8.3).
Treatment resulted in an estimated expected reduction in DON of

1.2 ppm (D̂T = 2b̂=_1.2) (Table 3). The range of estimated treatment
effects for index across the trials was about the same as with the
analysis of index and yield (_36.1 to 0.06). Estimated treatment
effects for DON ranged from _8.1 to +3.7, with 7% of the trials
exhibiting an actual increase in mean DON when treated with
fungicide (Fig. 4).
The magnitude of the estimated treatment effect for DON

generally increased with estimated treatment effect for FHB index
(Fig. 4A) and decreasedwith the estimated expected value for index
in each trial (Fig. 4B). The former indicates that the largest
reductions in DON from fungicide treatment tended to occur with
the largest reductions in FHB index from treatment. Trial-level

surrogacy of index for DON was weak, however, with R̂
2

trial
calculated from equation 15 equal to 0.18 (Table 3). Although
significant (the 95% confidence interval for R2

trial did not include
0), there was high variability in the treatment effect for DON in
relation to the treatment effect for index. There was some very
slight evidence of individual surrogacy of index for DON, with

R̂
2

indiv = 0.04 (equation 12), and a confidence interval that did not

TABLE 2. Akaike information criterion statistic for the fit of the bivariate linear mixed model (equation 5) to the Fusarium head blight data, with different
specifications of the covariance matrix for the block effect (equation 10), and the presence or not of a random surrogate effect of trial (mSi) when there is no block
effect

Model specification

Response variables in equation 5

Yield:index DON:index log(DON):log(index)

No block, no random intercept (mSi) 10,699.6 14,222.5 7,826.4
No block effect 9,191.7 12,477.5 6,410.5
Block effect (with 0 covariance) 9,171.0 12,463.9 6,371.6
Block effect (no constraints) —a —a 6,372.1

a Singular covariance matrix for block. Model form rejected.
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quite reach 0 (Table 3). The estimated residuals from the univariate
analyses showed a slight positive relationship, but with high scatter
(Fig. 4C).
Similar weak trial-level surrogacy was found with the univariate

random-trial-effect analysis and with the bivariate fixed-trial-effect

analysis. The R̂
2

trial valueswere slightly lower than those foundwith the
full bivariate random-effect model, 0.13-0.15 versus 0.18 (Table 3).
Individual-level surrogacy estimates were also similar between these

two approximate methods (R̂
2

indiv = 0.05), confirming the very weak
relationship of DON and index at the individual plot level.

Logarithm of index and DON. Aswith the previous analyses,
the bivariate random-trial-effects model (equation 5, with §ST = 0 in
equation 10) was successfully fitted to the log-transformed data.
Estimated expected log ratios of the treatment versus the control

were _1.08 for index (D̂S = 2â) and _0.61 for DON (D̂T = 2b̂)
(Table 3). Large negative values indicate large reductions in the
response variable. Back-transformation leads to an estimate of
percent control (Madden and Paul 2011; Paul et al. 2007) of 66% for
FHB index and 46% for DON. The estimated treatment effect for

log(DON) [i.e., D̂Ti = 2b̂i = 2ðb̂+ b̂iÞ] slightly increased with the

estimated treatment effect for log(index) [i.e., D̂Si = 2âi = 2ðâ+ âiÞ]
and with the estimated expected value of log(index) for each trial
(ĥSi = ĥS + m̂Si) (Fig. 5A and B). However, there was a great deal of

scatter, translating toavery lowvalueof 0.06 forR̂
2

trial (Table3).Back-

transformationof the individual D̂Si and D̂Ti values also showed a high
degree of scatter (Fig. 5C), althoughwith a slight upward trend in the
percent control for DON in relation to percent control for index.
There alsowas little evidence of individual-level surrogacy (Table 3).
The two approximations (univariate random-trial and bivariate

fixed-trial) resulted in very similar results to that found for the full
bivariate random-trial model (Table 3). A plot of the estimated
residuals from the two univariate-model fits demonstrates the very
low individual-level surrogacy (Fig. 5D).

Checks on the analyses. Although there was no evidence to
reject a linear relationship between FHB index and yield or DON
based on residual plots, the analyses were repeated using the
angular transformation of index because variability of a percent or
proportion depends on themeanvalue (Littell et al. 2006).R2-based
surrogacy results were little affected by use of this transformation.

For yield and angular-transformed index, R̂
2

trial was 0.42, 0.21, and
0.21 for the full bivariate model, bivariate model with fixed trial
effects (approximation), and univariate model with random trial

effects (approximation), respectively. R̂
2

indiv values were all 0.01 or
less. These are almost the same as shown in Table 3 for the analysis
on index directly. For DON and angular-transformed FHB index,

R̂
2

trial was 0.19, 0.14, and 0.16, respectively, for the same three

analytic approaches, and R̂
2

indiv values were all 0.04 or less. These
results are all close to the values shown in Table 3 for untransformed
index. This shows that the results for these datawere not sensitive to
possible variance heterogeneity of index.

DISCUSSION

Epidemiologists have invested considerable effort into charac-
terizing relationships between disease intensity and other epidemic
components (e.g., AUDPC, time to a fixed level of disease,
epidemic rate parameter, healthy area duration) and resulting yield
or yield loss (Madden et al. 2007; Savary et al. 2006, 2017b).
Although to a lesser extent, researchers have also explored the
relationship between disease and toxin concentration in harvested
products (Okoth et al. 2017; Reid et al. 1996; Williams et al. 2011).
Even when the primary interest is in crop yield or toxin,
measurements of disease intensity (or other estimated epidemic
components) may shed light on how plant diseases directly or
indirectly affect yield and toxin. For instance, one may investigate
whether declines in yield are due to the effects of disease on
radiation interception or radiation use efficiency (Savary et al.
2017b). Or, one may wish to determine the biological and
environmental conditions that result in increased (or decreased)
levels of toxin for different pathogens (Andersen et al. 2015;
Cowger et al. 2009; Culler et al. 2007; Gautam and Dill-Macky
2012; Ojiambo et al. 2018; Okoth et al. 2017; Xu et al. 2014). In this
regard, one could determine if pathogen biomass (based on DNA
content) could be used as a surrogate for the toxin it produces (Xu and
Nicholson 2009). In other circumstances, measurement of disease
early in an epidemic could be considered a surrogate for disease
intensity later in an epidemic (say, for a long-season crop or for a
perennial), or for area under the disease progress curve based on the
entire epidemic (Madden et al. 2007). Also, easy-to-measure disease
incidence (proportion of individuals diseased) could be considered as
a surrogate for themore-difficult-to-measure disease severity (area of
diseased tissue), after a suitable linearizing transformation was used
(McRoberts et al. 2003). Likewise, severity of above-ground symptoms
(e.g., wilting) could be considered a surrogate or root disease severity
for infection by soilborne pathogens (Campbell and Neher 1994). If
a random variable is to be used instead of the random variable of
ultimate (primary) interest, then it should ideally be formally eval-
uated as a surrogate.
In principle, it may be possible to predict yield loss, toxin

concentration, or other response variables from measurements of
disease or estimates of epidemic components (Madden and Paul
2009; Madden et al. 2007; Paul et al. 2005b,2006). Since disease

TABLE 3. Trial-level and individual-level surrogacy results for wheat yield (T/ha) and deoxynivalenol (DON) in harvested grain (ppm) as the true response
variable, with Fusarium head blight index (field severity) as the surrogate, and for log(DON) as the true response and log(index) as the surrogate, with expected
value and coefficient of determination (R2)a estimates given for the fit of the full random-trial-effects bivariate model, and R2 estimates for two approximations (a
fixed-trial-effects bivariate model and combined use of two random trial-effects univariate models)

Response variable Estimateb Estimated CI

Random, bivariate
Fixed,
bivariate

Random,
univariate

R2
trial R2

trialCI R2
indiv R2

indivCI R2
trial R2

indiv R2
trial R2

indiv

Yield:index
Surrogate (index) treatment effect (DS)

_8.29 (1.08) _10.45 ↔ _6.13 0.42 0.25 ↔ 0.59 0.002 0 ↔ 0.01 0.22 0.002 0.22 0.002
True response (yield) treatment effect (DT) 0.44 (0.04) 0.36 ↔ 0.52
DON:index
Surrogate (index) treatment effect (DS)

_8.28 (1.08) _10.44 ↔ _6.12 0.18 0.03 ↔ 0.33 0.04 0.02 ↔ 0.06 0.13 0.05 0.15 0.05
True response (DON) treatment effect (DT)

_1.20 (0.24) _1.68 ↔ _0.72
Log(DON):log(index)c

Surrogate (log(index)) treatment effect (DS)
_1.08 (0.10) _1.27 ↔ _0.87 0.06 0 ↔ 0.16 0.02 0.01 ↔ 0.03 0.05 0.02 0.07 0.02

True response (log(DON)) treatment effect (DT)
_0.61 (0.08) _0.77 ↔ _0.45

a R2
trial: trial-level surrogacy, estimated with equation 15 for the full model, and with equation 17 for the two approximations. R2

indiv: individual-level surrogacy,
estimated with equation 12 for the full model and for the fixed-trial bivariate model, and with equation 16 for the univariate models. If a confidence interval (CI)
for R2

trial or R
2
indivextends below 0, it is truncated at 0.

b Estimates of expected value for the population of trials (equation 8). CI at 95% is shown.
c Back-transformation of values correspond to a percent control of 66% for index and 46% for DON.
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measurements occur earlier than measurements of yield or toxin,
andmay be obtainedmore economically andwith fewer specialized
equipment requirements, disease intensity could be then used as a
surrogate for the response variables of primary interest, if the
relationships between the variables were strong enough, at the
individual and/or trial level. FHB index and other measures of
disease intensity data (e.g., incidence) are routinely collected in
fungicide and integrated management trials (Paul et al. 2019), as
well as in surveys of grower fields before crop maturity (often for
fields where no toxin or yield data are obtained) (Kriss et al. 2012).
Even when precision is not high enough for prediction, differences
in treatment effects between the potential surrogates and true
response variable can shed light on the mechanisms underlying
treatment effects (Savary et al. 2006). Formal concepts of surrogacy
have become well established in medicine and pharmacology
(Alonso et al. 2017;Buyse et al. 2016), but these ideas have received
little recognition in plant pathology. It is critical to understand that
one can consider the strength of the relationship between the
surrogate and the true response variable in individual experimen-
tal units (after adjusting for any treatment effects), known as
individual-level surrogacy, and the strength of the relationship
between the treatment effect size (e.g., mean difference between a
treatment and a control) in the true response variable and treatment
effect size in the surrogate, known as trial-level surrogacy (Alonso
Abed and Van der Elst 2017b; Molenberghs et al. 2008). The latter
mandates that data from multiple trials be analyzed.
We successfully applied the general statistical methodology

developed by (Buyse et al. 2000; 2016) for continuous random
variables and a binary treatment classification to quantify the extent
to which FHB field severity (FHB index) can be used as a surrogate
for wheat grain yield andDON toxin contamination. One advantage
of this approach is that relatively easy-to-interpret coefficient-
of-determination-type statistics are obtained for both types of
surrogacy. Using data from the USWBSI uniform fungicide trials
(for susceptible cultivars), and model expanded to include block
effects, we found that FHB index is a poor surrogate for yield or
DON at the individual plot level. That is, knowing the (estimated)
mean FHB index in a plot (the experimental unit) did not provide
reliable information on mean yield or DON [or ln(DON)] for the
same plot, after adjusting for treatment effects.
FHB index did provide a higher level of trial-level surrogacy for

yield, in that there was a generally increasing positive yield
differences with increasing negative index differences between the
fungicide treatment and the control. Nevertheless, the R2

trial value
(0.4) was far from the informal threshold of 0.8 for high surrogacy
suggested by Buyse et al. (2000). Moreover, the R2

trial statistic from
the full bivariate model (equation 15) was about double that found
with the approximations (equation 17). The lower estimates from
the approximate models were reasonable based on the confidence
interval for the full bivariate model. As shown by Tibaldi et al.
(2003), the full bivariate model can be difficult to fit and could
produce biased results if the estimated among-trial covariance
matrix (equation 11) is ill conditioned or not positive definite, the
former being difficult to detect. All variance-covariance parameter
estimates in equation 11 were nonzero, and all eigenvalues of the
matrix were positive, indicating that the estimated matrix for each
analysiswaspositive definite.Although there are differentmeasures
of an ill-conditioned variance-covariance matrix (Goodfellow et al.
2016; Tabeart et al. 2019), such as the ratio of the largest to smallest
eigenvalues, there is no agreed upon threshold for this ratio in
identifying problem situations, nor are there other unambiguous
way of determining when the full bivariate model (equation 5)

should be abandoned based on properties of D̂ (Burzykowski 2017;
Tibaldi et al. 2003). These uncertainties certainly justify the use of
the two approximations.
With the large number of trials in the data set (82), challenges in

fitting the full bivariate equation 5 are considerably diminished, but

Fig. 3. Trial-level and individual-level surrogacy results for wheat yield (T/ha)
in relation to Fusarium head blight (FHB) index (field severity) across 82 trials.
A, Estimated treatment effect (mean difference between fungicide treatment and
control) for wheat yield versus estimated treatment effect for index. B, Esti-
mated treatment effect for yield versus estimated expected value of index per
trial. Results in A and B based on the fit of the bivariate random-trial-effects
model (equation 5). C, Estimated residuals for yield for each experimental unit
versus estimated residuals for index. Residuals in C estimated from the fit of two
univariate random-trial-effects models (each component of equation 5 fitted
separately), followed by a linear regression of the estimated residuals. Lines in
A and B are best fits from ordinary least squares regression with a single
predictor variable, shown to improve visual presentation. These are not the
predictions from the use of equation 5 or from either of the approximations
(which are based on a multiple-regression [two predictor-variable] model).
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there is still the possibility that incorporation of a block effect
into the model had an unexplained impact on the estimate of D
(equation 11) and, thus, an influence on the R2

trial calculation. Thus,
approximation methods are further justified here (Tibaldi et al.
2003). With the approximations, R2

trial was based solely on a simple
two-variable linear regression equation (equation 17) for treatment
effects, calculated after the bivariate or univariate mixed models
were fitted to S andT. Nevertheless, it should be emphasized that the
results were very similar among the different methods utilized
(Table 3), with the biggest variation in results for the yield:index
data. Overall, based on the results from the full bivariate model
results and the two approximations, trial-level surrogacy was
moderate at best for yield, suggesting that one cannot readily make
strong conclusions in individual trials aboutmagnitude of treatment
effects on yield based on treatment effects on FHB index.
FHB index was found to be even less satisfactory as a trial-level

surrogate for DON toxin in harvested wheat grain. In terms of mean
differences between the treatment and control, there was only a
weak relation in treatment effects for index and DON (with a
general trend of increasing negative treatment differences for DON
with increasing negative treatment differences for index). This was
generally consistent when using the full model and the approxima-
tions. There was even less of a relation when treatment effects were
based on differences of mean log-transformed data (and thus, also
for percent control).
The low surrogacy of FHB index for the endpoints of interestmay

seem surprising at first, given that there are overall relationships
between index and DON and index and yield (Madden and Paul
2009; Paul et al. 2005b, 2006) across a large number of independent
trials. Moreover, in terms of averages (estimated expected values)
across many trials, treatments that work best for reducing DON or
increasing yield generally work best for decreasing FHB index
(Paul et al. 2018a, b, 2019). However, as mentioned in the
Introduction, those papers also showed the substantial variability
in the relationship among the trials, possibly suggesting that
relationships for a given trial, or even within a trial for individual
observations (plots), was not predictable. The surrogacy analysis
here builds on this past work and shows that evidence of a treatment
effect on FHB index is not sufficient to predict the magnitude of
a treatment effect on DON in a given trial; even for yield, the
predictability of the magnitude of a treatment effect based on index
is weak. This low surrogacy can in part explain the challenges
in breeding and developing cultivars with high levels of DON
resistance when researchers make decisions on genotype selections
based primarily on FHB index (often because selections must be
made before DON results are known). Although resistance to
infection and fungal colonization of the wheat spike naturally leads
to lower DON contamination (in the sense that DON is produced by
the pathogen and is needed for colonization), the specific reaction of
cultivars to the latter is fairly complex, not clearly understood, and is
influenced by environmental and host-related factors that may be
independent of index or operatewell after visual symptoms of index
are estimated (Cowger et al. 2009, 2016; Culler et al. 2007; Gautam
and Dill-Macky 2012; Sneller et al. 2012). Low FHB index-DON
surrogacy can also explain the fact that DON sometimes exceeds
critical thresholds in a commercial field even if a low risk of index is
predicted by the National FHB Prediction Center (the prediction
center is based on a model for FHB index, not DON) (Moraes et al.
2018; Shah et al. 2019; L. V. Madden, unpublished data).
There are several possible reasons for the low surrogacy of FHB

index. Two of the most likely ones involve sampling precision and
observation timing. For instance, there is a great deal of variation
among cooperators with the USWBSI uniform fungicide trials in
the number of samples used for assessing index and how samples
are collected and processed forDONanalysis. A typical sample size
for index is 30 to 50 spikes per 100 ft2 (9.3 m2) of plot, but
sometimes even lower numbers have been used (Paul et al. 2008; L.

Fig. 4. Trial-level and individual-level surrogacy results for deoxynivalenol (DON)
concentration in harvested wheat grain (ppm) in relation to Fusarium head blight
(FHB) index (field severity) across 82 trials. A, Estimated treatment effect (mean
difference between fungicide treatment and control) for DON versus estimated
treatment effect for index. B, Estimated treatment effect for DON versus estimated
expected value of index per trial. Results in A and B based on the fit of the bivariate
random-trial-effects model (equation 5). C, Estimated residuals for DON for each
experimental unit versus estimated residuals for index. Residuals in C estimated
from the fit of two univariate random-trial-effects models (each component of
equation 5 fitted separately), followed by a linear regression of the estimated
residuals. Lines in A and B are best fits from ordinary least squares regression with
a single predictor variable, shown to improve visual presentation. These are not the
predictions from the use of equation 5 or from either of the approximations (which
are based on a multiple-regression [two predictor-variable] model).
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V.Madden, unpublished data). However, newwork byMoraes et al.
(2017) has shown that precision of estimates of mean index per plot
can be very low with under 70 samples. For DON, plot-level
estimates are commonly made from a single sample of 450 to 900 g
of grain from which a ground sample of less than 100 g is sent for
DON extraction and quantification (Paul et al. 2008). In some cases,
samples are pulled directly from the grain stream during harvest,
whereas in other cases they are drawnafter harvest from stored grain
lots. Work by Champeil et al. (2004) and Hart and Schabenberger
(2001) has shown that the precision of plot- or field-level DON
estimates depends on how samples are collected and processed and
when they are collected relative to harvest. Imprecise estimates of
index and DON due to poor sampling would affect the variability in
the observed bivariate relationship between the mean response
variables at the individual plot level, which would carry over to the
trial level. This sample-size issue is not typically of direct relevance
in the surrogacy studies in medicine because the individual
observation is a single person (with measurements of S and T),

rather than an individual plot with a sample of S and T measure-
ments that are averaged. However, the sampling imprecision issue
here is analogous to measurement error of covariates (predictor
variables) in data analysis within medical and other disciplines
(Li and Wang 2012).
One strong reason to use a surrogate, in general, is because the

variable can be observed earlier than the variable of interest (Alonso
Abed andVan der Elst 2017a; Buyse 2017), sometimes years earlier
for some systems. But the length of time between themeasurements
potentially can also reduce the value of a variable as a surrogate.
This is particularly important in agricultural production systems
that are strongly influenced by weather conditions. In our situation,
the time between assessment of FHB index (at Feekes 11.1,
reflecting earlier infection and colonization of the spikes) and DON
and yield measurements at harvest (a duration of more than 50 days
for winter wheat grown in the northern half of the U.S. wheat belt
[D’Angelo et al. 2014]) likely contributes to reduced surrogacy. As
discussed and demonstrated by others (Andersen et al. 2015;

Fig. 5. Trial-level and individual-level surrogacy results for logarithm of deoxynivalenol (DON) concentration in harvested wheat grain (ppm) in relation to
logarithm of Fusarium head blight (FHB) index (field severity) across 82 trials. A, Estimated treatment effect (mean difference between fungicide treatment and
control) for log(DON) versus estimated treatment effect for log(index). B, Estimated treatment effect for log(DON) versus estimated expected value of log(index)
per trial. C, Estimated percent control (percent reduction in DON by the treatment relative to the control) for DON versus percent control of index, based on back-
transformation of the treatment effects in part A. Results in A to C based on the fit of the bivariate random-trial-effects model (equation 5). D, Estimated residuals
for log(DON) for each experimental unit versus estimated residuals for log(index). Residuals in D estimated from the fit of two univariate random-trial-effects
models (each component of equation 5 fitted separately), followed by a linear regression of the estimated residuals. Lines in A to C are best fits from ordinary least
squares regression with a single predictor variable, shown to improve visual presentation. These are not the predictions from the use of equation 5 or from either of
the approximations (which are based on a multiple-regression [two predictor-variable] model).
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Cowger et al. 2009; Culler et al. 2007; Edwards et al. 2018; Gautam
and Dill-Macky 2012; Moraes et al. 2018), late-season environ-
mental conditions (especially moisture) can affect DON pro-
duction, conversion of DON to DON-3-glucocide, movement of
DON into grain, and retention of DON in grain for a given level of
FHB index. Likewise, many factors such as postanthesis temper-
ature and rainfall and late-season development of diseases like
Stagonospora and leaf rust can influence grain yield after the
assessment of FHB index by virtue of their effects on grain fill
(Czarnecki and Evans 1986; Salgado et al. 2015, 2017). In addition,
studies primarily from Europe show that the presence of other
Fusarium species in wheat spikes can affect the production of DON
by F. graminearum (Xu and Nicholson 2009); this is probably not
an issue here since F. graminearum is the dominate FHB patho-
gen in the United States (McMullen et al. 2012). For some other
pathosystems, toxins are commonly produced by Fusarium species
without any visible disease symptoms at all (Xu et al. 2014).
In conclusion, we have introduced an expansion of the

continuous-variable surrogacy models by Buyse et al. (2000) and
found moderate or no surrogacy of FHB index for other response
variables of interest. We are not aware of other attempts to take this
type of formal and strict approach to quantify individual- and trial-
level surrogacy in plant disease field studies. The question remains
for future work: Are there plant pathosystems where disease
severity measurement at a particular time (or possibly area under
the disease progress curve or time to a particular level of disease)
provides a high level of surrogacy for other response variables of
interest? The full bivariate method of Buyse et al. (2000), suitably
expanded for complexities of experimental designs in plant
protection provides one approach for evaluating surrogacy.
Theoretical statistical research is still needed, however, to evaluate
the best way to account for blocking in the derivation of trial-level
surrogacy statistics, and to accommodate multiple individual
treatments in the model. The approximate two-stage methods
described herein (both univariate and bivariate), as well as other
approximations not utilized by us (Tibaldi et al. 2003),may bemore
practical in handling the many variations in experimental designs,
including multiple treatments in each trial. As long as one can
estimate for each trial the treatment effects for the true and surrogate

variables (D̂Tand D̂S, respectively), as well as the trial-level
expected value for the surrogate variable, one can estimate trial-
level surrogacy using equation 17. If bivariate mixedmodels are too
difficult to fit, correlations of estimated residuals from univariate
models are sufficient to approximate individual-level surrogacy.
Alternatively, new bivariate (Bayesian) network-meta-analysis
methods (Bujkiewicz et al. 2019) or an information-theoretic
modeling approach to surrogacy (Alonso and Molenberghs 2007)
may give great flexibility in dealing with multiple treatments,
blocking, trial-level and individual-level covariates, and other
issues related to experimental designs common in plant pathology.
This latter approach gave very similar results to those shown here
when applied to the FHB:DON:yield dataset (unpublished data).
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